_

Teacher's Name: Dr. Shruti Bhardwaj

Class B.Sc 2nd sem (2022-23)

Subject Ph	ysics (PH -201: Properties of Matter and Kinetic Theory of Gases)

Month	Торіс
01-15	Unit I: Moment of inertia Rotation of rigid body, Moment of inertial, Torque,
Feb-2023	angular momentum, Kinetic Energy of rotation. Theorem of perpendicular and
	parallel axes (with proof)
15-28	Moment of inertia of solid sphere, hollow sphere, spherical shell, solid cylinder,
Feb-2023	hollow cylinder and solid bar of rectangular cross-section, Fly wheel, Moment of
	inertia of an irregular body, Acceleration of a body rolling down on an inclined
	plane.
01-15	Unit 2: Elasticity Elasticity, Stress and Strain, Hook's law, Elastic constant and their
March-	relations, Poisson's ratio, Torsion of cylinder and twisting couple, Determination of
2023	coefficient of modulus of rigidity for the material of wire by Maxwell's needle,
	Bending of beam (Bending moment and its magnitude),
15-31	Test & Assignment of Syllabus Covered
March-	Cantilever and Centrally loaded beam. Determination of Young's modulus for the
2023	material of the beam and Elastic constants for the material of the wire by Searle's
	method.
	Unit 3: Kinetic theory of gases-I Assumption of Kinetic theory of gases, pressure of
01-15	an ideal gas (with derivation), Kinetic interpretation of Temperature, Ideal Gas
April-	equation. Degree of freedom.
2023	
	Law of equipartition of energy and its application for specific heat of gases, Real
16-30	gases, Vander wall's equation, Brownian motion(Qualitative) Unit 4: Kinetic
April-	theory of gases-II Maxwell's distribution of speed and velocities (derivation
2023	required)
	Experimental verification of Maxwell's law of speed distribution: most probable
01-27	speed, average and r.m.s. speed, Mean free path, Transport of energy and
May-	momentum, Diffusion of gases Test & Assignment of Syllabus Covered
2023	and Revision.

Teacher's Name: Dr. Shruti Bhardwaj

Class B.Sc 4th sem (2022-23)

Subject Physics (Paper PH-401: Statistical Physics)

Month	Topic
01-15	Unit -I: Statistical Physics I Microscopic and Macroscopic systems, events-
Feb-2023	mutually exclusive, dependent and independent. Probability, statistical probability,
	A- priori Probability and relation between them, probability theorems, some
	probability considerations, combinations possessing maximum probability,
	combination possessing minimum probability, Tossing of 2,3 and any number of
	Coins, Permutations and combinations
15-28	distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in
Feb-2023	two boxes of equal size, Micro and Macro states, Thermodynamical probability,
	Constraints and Accessible states, Statistical fluctuations, general distribution of
	distinguishable particles in compartments of different sizes, Condition of
	equilibrium between two systems in thermal contact β parameter, Entropy and
	Probability (Boltzman's relation).
01-15	Unit –II: Statistical Physics II Postulates of statistical physics, Phase space, Division
March-	of Phase space into cells, three kinds of statistics, basic approach in three statistics.
2023	M. B. statistics applied to an ideal gas in equilibrium- energy distribution law
	(including evaluation of σ and β),
15-31	Test & Assignment of Syllabus Covered
March-	speed distribution law & velocity distribution law. Expression for average speed,
2023	r.m.s. speed, average velocity, r. m. s. velocity, most probable energy & mean
	energy for Maxwellian distribution.
	Unit-III: Quantum Statistics Need for Quantum Statistics: Bose-Einstein energy
01-15	distribution law, Application of B.E. statistics to Planck's radiation law B.E. gas,
April-	Degeneracy and B.E. Condensation, FermiDirac energy distribution law, F.D. gas
2023	and Degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy
	distribution law
	Fermi Dirac gas and degeneracy, Fermi energy and Fermi temperature, Fermi Dirac
16-30	energy distribution law for electron gas in metals, Zero point energy, Zero point
April-	pressure and average speed (at 0 K) of electron gas, Specific heat anomaly of metals
2023	and its solution. M.B. distribution as a limiting case of B.E. and F.D. distributions,
	Comparison of three statistics.
01.05	Unit-IV: Theory of Specific Heat of Solids Dulong and Petit law. Derivation of
01-27	Dulong and Petit law from classical physics. Specific heat at low temperature,
May-	Einstein theory of specific heat, Criticism of Einstein theory, Debye model of
2023	specific neat of solids, success and shortcomings of Debye theory, comparison of
	Einstein and Debye theories. Test of Syllabus Covered and Revision.

Teacher's Name: Dr. Shruti Bhardwaj

Class B.Sc 6th Sem. (2022-23)

Subject Physics(Paper PH-602: Atomic and Molecular Spectroscopy)

Month	Торіс
01-15	Unit – I: Historical background of atomic spectroscopy Introduction of early
Feb-2023	observations, emission and absorption spectra, atomic spectra, wave number,
	spectrum of Hydrogen atom in Balmer series, Bohr atomic model(Bohr's
	postulates), spectra of Hydrogen atom, explanation of spectral series in Hydrogen
	atom, un-quantized states and continuous spectra, spectral series in absorption
	spectra, effect of nuclear motion on line spectra (correction of finite nuclear mass)
15-28	variation in Rydberg constant due to finite mass, short comings of Bohr's theory,
Feb-2023	Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr
	quantization law, Bohr's corresponding principle, Sommerfeld's extension of
	Bohr's model, Sommerfeld relativistic correction, Short comings of Bohr-
	Sommerfeld theory, Vector atom model; space quantization, electron spin, coupling
	of orbital and spin angular momentum, spectroscopic terms and their notation,
	quantum numbers associated with vector atom model, transition probability and
	selection rules.
01-15	Unit –II: Vector Atom Model (single valance electron) Orbital magnetic dipole
March-	moment (Bohr megnaton), behavior of magnetic dipole in external magnetic filed;
2023	Larmors' precession and theorem. Penetrating and Non-penetrating orbits,
	Penetrating orbits on the classical model; Quantum defect, spin orbit interaction
	energy of the single valance electron, spin orbit interaction for penetrating and non-
	penetrating orbits. quantum mechanical relativity correction, Hydrogen fine spectra
15-31	Test & Assignment of Syllabus Covered
March-	Main features of Alkali Spectra and their theoretical interpretation, term series and
2023	limits, Rydeburg-Ritze combination principle, Absorption spectra of Alkali atoms.
	observed doublet fine structure in the spectra of alkali metals and its Interpretation,
	Intensity rules for doublets, comparison of Alkali spectra and Hydrogen spectrum.
	UNIT-III: Vector Atom model (two valance electrons) Essential features of spectra
01-15	of Alkaline-earth elements, Vector model for two valance electron atom: application
April-	of spectra. Coupling Schemes;LS or Russell – Saunders Coupling Scheme and JJ
2023	coupling scheme, Interaction energy in L-S coupling (sp, pd configuration), Lande
	interval rule, Pauli principal and periodic classification of the elements. Interaction
	energy in JJ Coupling (sp, pd configuration)
	equivalent and non-equivalent electrons, Two valance electron system-spectral
16-30	terms of non-equivalent and equivalent electrons, comparison of spectral terms in L-
April-	S And J-J coupling. Hyperfine structure of spectral lines and its origin; isotope
2023	effect, nuclear spin. Unit -IV: Atom in External Field Zeeman Effect (normal and
	Anomalous), Experimental set-up for studying Zeeman effect, Explanation of
	normal Zeeman effect(classical and quantum mechanical), Explanation of

	anomalous Zeeman effect(Lande g-factor), Zeeman pattern of D1 and D2 lines of
	Naatom, Paschen-Back effect of a single valence electron system. Weak field Stark
	effect of Hydrogen atom.
	Molecular Physics General Considerations, Electronic States of Diatomic
01-27	Molecules, Rotational Spectra (Far IR and Microwave Region), Vibrational Spectra
May-	(IR Region), Rotator Model of Diatomic Molecule, Raman Effect, Electronic
2023	Spectra. Test of Syllabus Covered and Revision.

Note:-

The teaching of topics to the students on the dates/days mentioned in the above lesson plan may not be exactly followed and may have little variations/fluctuations because of some unforeseen circumstances. For example: various Functions/Activities organized by the College (*Musical Meet, Blood Donation, Important Days Celebrations, Co-Curricular/Extra-curricular Activities etc.*), Response of Students in the Class, Request of Students for Repetition of some specific Topics, Unpredicted Leaves, Restricted Holidays etc.

Students can ask any query on my E-Mail ID also E-Mail:

•

Teacher's Name: Dr. Sandeep Kumar

Class B.Sc 6th Sem. (2022-23)

Subject Physics (Paper PH-601: Solid State and Nano Physics)

Month	Торіс
01-15 Feb-	Unit I: Crystal Structure I Crystalline and glassy forms, liquid crystals, crystal
2023	structure, periodicity, lattice and basis, crystal translational vectors and axes. Unit
	cell and Primitive Cell, Winger Seitz primitive Cell
15-28 Feb-	Symmetry operations for a two dimensional crystal, Bravais lattices in two and
2023	three dimensions. Crystal planes and Miller indices, Interplaner spacing, Crystal
	structures of Zinc Sulphide, Sodium Chloride and Diamond.
01-15	Unit II: Crystal Structure II X-ray diffraction, Bragg's Law and experimental X-ray
March- 2023	diffraction methods. K-space and reciprocal lattice and its physical significance
15-31	Test & Assignment of Syllabus Covered
March- 2023	reciprocal lattice vectors, reciprocal lattice to a simple cubic lattice, b.c.c. and f.c.c.
	Unit III: Super conductivity Historical introduction, Survey of superconductivity,
01-15 April-2023	Super conducting systems, High Tc Super conductors, Isotopic Effect, Critical
	Magnetic Field, Meissner Effect, London Theory and Pippards' equation
	Classification of Superconductors (type I and Type II), BCS Theory of
16-30 April-2023	Superconductivity, Flux quantization, Josephson Effect (AC and DC), Practical
	Applications of superconductivity and their limitations, power application of
	superconductors.
01-27 May-	Unit IV: Introduction to Nano Physics Definition, Length scale, Importance of
	Nano-scale and technology, History of Nantechnology, Benefits and challenges in
2023	molecular manufacturing. Molecular assembler concept, Understanding advanced
	capabilities. Vision and objective of Nano-technology, Nanotechnology in different
	field, Automobile, Electronics, Nano-biotechnology, Materials, Medicine. Test of
	Syllabus Covered and Revision.

Teacher's Name: Dr. Sandeep Kumar

Class B.Sc 4th Sem. (2022-23)

Subject Physics (Paper PH-402: Wave and Optics II)

Month	Торіс
01-15 Feb-	Unit-1: Polarization Polarization: Polarisation by reflection, refraction and
2023	scattering, Malus Law, Phenomenon of double refraction, Huygen's wave theory of
	double refraction (Normal and oblique incidence)
15-28 Feb-	Analysis of polarized Light. Nicol prism, Quarter wave plate and half wave plate,
2023	production and detection of (i) Plane polarized light (ii) Circularly polarized light
	and (iii) Elliptically polarized light. Optical activity, Fresnel's theory of optical
	rotation, Specific rotation, Polarimeters (half shade and Biquartz).
01-15	Unit-II: Fourier analysis Fourier theorem and Fourier series, evaluation of Fourier
March-	coefficient, importance and limitations of Fourier theorem, even and odd functions,
2023	Fourier series of functions f(x) between (i) 0 to 2pi, (ii) –pi to pi, (iii) 0 to pi, (iv) –L
	to L
15-31	Test & Assignment of Syllabus Covered
March-	Complex form of Fourier series, Application of Fourier theorem for analysis of
2023	complex waves: solution of triangular and rectangular waves , half and full wave
	rectifier outputs, Parseval identity for Fourier Series, Fourier integrals.
	Unit III: Fourier transforms Fourier transforms and its properties, Application of
01-15	Fourier transform (i) for evaluation of integrals, (ii) for solution of ordinary
April-2023	differential equations, (iii) to the following functions: 1. $f(x) = e - x^2/2$ 2. $f(x) = 0$
	X >a
	Unit-IV: Geometrical Optics II Chromatic, spherical, coma, astigmatism and
16-30	distortion aberrations and their remedies
April-2023	Eiber Option Option fiber Critical angle of propagation Mode of Dropagation
01-27 Mav-	Accentance and Experiment information index shares. Neversited exertance Transport
2023	Acceptance angle, Fractional refractive index change, Numerical aperture, Types of
	optics fiber, Normalized frequency, Pulse dispersion, Attenuation, Applications,
	Fiber optic Communication, Advantages. Test of Syllabus Covered and Revision.

Teacher's Name: Dr. Sandeep Kumar

Class B.Sc 2nd Sem (2022-23)

Subject Physics (Paper: PH -202 Semiconductor)

wonth	Τορίς
01-15 Feb-	Unit I: Semiconductors Energy bands in solids, Intrinsic and extrinsic
2023	semiconductors, carrier mobility and electrical resistivity of semiconductors, Hall
	effect, p-n junction diode and their characteristics
15-28 Feb-	Zener and Avalanche breakdown, Zener diode, Zener diode as a voltage regulator.
2023	Light emitting diodes (LED), Photoconduction in semiconductors, Photodiode,
	Solar Cell, p-n junction as a rectifier, half wave and full wave rectifiers (with
	derivation), filters (series inductor, shunt capacitance, L-section or choke, π and
	R.C. filter circuits).
01-15	Unit 2: Transistors Junction transistors, Working of NPN and PNP transistors,
March- 2023	Three configurations of transistor (C-B, C-E, C-C modes), Common base, common
	emitter and common collector characteristics of transistor,
15-31	Test & Assignment of Syllabus Covered
March-	Constants of a transistor and their relation, Advantages and disadvantages of C-E
2023	configuration. D.C. load line .Transistor biasing; various methods of transistor
	biasing and stabilization.
01-15 April-2023	Unit 3: Transistor Amplifiers Amplifiers, Classification of amplifiers, common base
	and common emitter amplifiers, coupling of amplifiers, various methods of
	coupling, Resistance- Capacitance (RC) coupled amplifier (two stage, concept of
	band width, no derivation)
	Feedback in amplifiers, advantages of negative feedback, emitter follower,
16-30	distortion in amplifiers. Unit 4: Oscillators Oscillators. Principle of oscillation
April-2023	
01-27 May- 2023	Classification of oscillators, Condition for self sustained oscillation: Barkhausen
	criterion for oscillation, Tuned collector common emitter oscillator, Hartley
	oscillator, C.R.O. (Principle and Working). Test & Assignment of Syllabus
	Covered and Revision.

Note:-

The teaching of topics to the students on the dates/days mentioned in the above lesson plan may not be exactly followed and may have little variations/fluctuations because of some unforeseen circumstances. For example: various Functions/Activities organized by the College (*Musical Meet, Blood Donation, Important Days Celebrations, Co-Curricular/Extra-curricular Activities etc.*), Response of Students in the Class, Request of Students for Repetition of some specific Topics, Unpredicted Leaves, Restricted Holidays etc.

Students can ask any query on my E-Mail ID also

٠